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(QCD2). The GSG model arises in the low-energy effective action of bosonized QCD2

with unequal quark mass parameters. The GSG potential for Nf = 3 flavors resembles

the potential of the effective chiral lagrangian proposed by Witten to describe low-energy

behavior of four dimensional QCD. Among the attractive features of the GSG model are

the variety of soliton and kink type solutions for QCD2 unequal quark mass parameters
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1. Introduction

Quantum Chromodynamics in two-dimensions (QCD2) (see e.g. [1]) has long been consid-

ered a useful theoretical laboratory for understanding non-perturbative strong-interaction

problems such as confinement [2], the large-Nc expansion [3], baryon structure [4] and,

more recently, the chiral-soliton picture for normal and exotic baryons [5]. Even though

there are various differences between QCD4 and QCD2, this theory may provide interest-

ing insights into the physical four-dimensional world. In two dimensions, an exact and
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complete bosonic description exists and in the strong-coupling limit one can eliminate the

color degrees of freedom entirely, thus getting an effective action expressed in terms of

flavor degrees of freedom only. In this way various aspects have been studied, such as

baryon spectrum and its q̄q content [4]. The constituent quark solitons of baryons were

uncovered taking into account the both bosonized flavor and color degrees of freedom [6].

In particular, the study of meson-baryon scattering and resonances is a nontrivial task for

unequal quark masses even in 2D [7].

Recently, in QCD4 there appeared some puzzles related with unequal quark masses [8]

providing an extra motivation to consider QCD2 as a testing ground for non-perturbative

methods that might have relevance in the real world. Claims for the existence of exotic

baryons - that can not be composed of just three quarks - have inspired intense studies of

the theory and phenomenology of QCD in the strong-interaction regime. In particular, it

has led to the discovery that the strong coupling regime may contain unexpected corre-

lations among groups of two or three quarks and antiquarks. Results of growing number

of experiments at laboratories around the world provide contradictive situation regarding

the experimental observation of possible pentaquark states, see e.g. [9]. These experiments

have thus opened new lines of theoretical investigation that may survive even if the original

inspiration - the exotic Θ+ pentaquark existence- is not confirmed. After the reports of null

results started to accumulate the initial optimism declined, and the experimental situation

remains ambiguous to the present. The increase in statistics led to some recent new claims

for positive evidence [10], while the null result [11] by CLAS is specially significant because

it contradicts their earlier positive result, suggesting that at least in their case the original

claim was an artifact due to low statistics. All this experimental activity spurred a great

amount of theoretical work in all kinds of models for hadrons and a renewed interest in soli-

ton models. Recently, there is new strong evidence of an extremely narrow Θ+ resonance

from DIANA collaboration and a very significant new evidence from LEPS. According to

Diakonov, “the null results from the new round of CLAS experiments are compatible with

what one should expect based on the estimates of production cross sections” [12].

It has been conjectured that the low-energy action of QCD2 (ec À Mq, Mq quark mass

and ec gauge coupling) might be related to massive two dimensional integrable models,

thus leading to the exact solution of the strong coupled QCD2 [4]. As an example of this

picture, it has been shown that the so-called su(2) affine Toda model coupled to matter

(Dirac) field (ATM) [13] describes the low-energy spectrum of QCD2 (one flavor and NC

colors) [14]. The ATM model allowed the exact computation of the string tension in

QCD2 [14], improving the approximate result of [15]. The strong coupling sector of the

su(2) ATM model is described by the usual sine-Gordon model [16 – 18]. The baryons in

QCD may be described as solitons in the bosonized formulation. In the strong-coupling

limit the static classical soliton which describes a baryon in QCD2 turns out to be the

ordinary sine-Gordon kink, i.e.

Φ(x) =
4

β0
tan−1[exp β0

√
2m̃x] (1.1)

where β0 =
√

4π
NC

is the coupling constant of the sine-Gordon theory, 8
√

2m̃/β0 is the mass
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of the soliton, and m̃ is related to the common bare mass of the quarks by a renormalization

group relation relevant to two dimensions. The soliton in (1.1) has non-zero baryon number

as well as Y charge. The quantum correction to the soliton mass, obtained by time-

dependent rotation in flavor space, is suppressed by a factor of NC compared to the classical

contribution to the baryon mass [4]. The considerations of more complicated mass matrices

and higher order corrections to the Mq/ec → 0 limit are among the issues that deserve

further attention.

In this context, we show that various aspects of the low-energy effective QCD2 action

with unequal quark masses can be described by the (generalized) sine-Gordon model (GSG).

The GSG model has appeared in the study of the strong coupling sector of the sl(n,C)

ATM theory [19 – 21], and in the bosonized multiflavor massive Thirring model [22]. In

particular, the GSG model provides the framework to obtain (multi-)soliton solutions for

unequal quark mass parameters. Choosing the normalization such that quarks have baryon

number Q0
B = 1 and a one-soliton has baryon number NC , we classify the configurations

in the GSG model with baryon numbers NC , 2NC , . . . 4NC . For example, the double sine-

Gordon model provides a kink type solution describing a multi-baryon state with baryon

number 4NC (see appendix). Then, using the GSG model we generalize the results of

refs. [4, 5] which applied the semi-classical quantization method in order to uncover the

normal [4] and exotic baryon [5] spectrum of QCD2. One of the main features of the

GSG model is that the one-soliton solution requires the QCD quark mass parameters to

satisfy certain relationship. In two dimensions there are no spin degrees of freedom, so, the

lowest-lying baryons are related to the purely symmetric Young tableau, the 10 dimensional

representation of flavor SU(3). This is the analogue of the multiplet containing the baryons

∆, Σ, Ξ, Ω− in QCD4. The next state corresponds to a state with the quantum numbers

of four quarks and an antiquark, the so-called pentaquark, which in two dimensions forms

a 35 representation of flavor SU(3). This corresponds to the four dimensional multiplet

10, which contain the exotic baryons Θ+, Σ̄, Ξ−−.

Here we improve the results of refs. [4, 5], such as the normal and exotic baryon

masses, the relevant mass ratios and the radius parameter of the exotic baryons. The semi-

classical computations of the masses get quantum corrections due to the unequal mass term

contributions and to the form of the diagonal ansatz taken for the flavor field (related to

GSG model) describing the lowest-energy state of the effective action. The corrections to

the normal baryon masses are an increase of 3.5% to the earlier value obtained in [5], and

in the case of the exotic baryon our computations improve the behavior of the quantum

correction by decreasing the earlier value in 0.34 units, so making the semi-classical result

more reliable. Let us mention that for the first exotic baryon [5] the quantum correction

was greater than the classical term by a factor of 2.46, so that semi-classical approximation

may not be a good approximation. As a curiosity, with the relevant values obtained by us

for QCD2 we computed the ratio between the lowest exotic baryon and the R = 10 baryon

masses M35/M10 ∼ 1.65, which is only 1% larger than the analogous four dimensional

QCD ratio MΘ+/Mnucleon ∼ 1.63. In [5] the relevant QCD2 ratio was 17% larger than this

value. The mass formulae for the normal and exotic baryons corresponding, respectively, to

the representations 10 and 35, in two dimensions resemble the general chiral-soliton model
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formula in four dimensions [23] except that there is no spin-dependent term ∼ J(J + 1),

and an analog term containing the soliton moment of inertia emerges.

The paper is organized as follows. The next section summarizes the bosonized low-

energy effective action of QCD2 and introduces the lowest-energy state described by the

GSG action. The global QCD2 symmetries are discussed. In section 3 the semi-classical

method of quantization relevant to a general diagonal ansatz is introduced. In subsec-

tion 3.1 we briefly review the ordinary sine-Gordon soliton semi-classical quantization in

the context of QCD2. In section 4 we discuss the quantum correction to the SU(3) GSG

ansatz in the framework of semi-classical quantization. In subsection 4.1 the GSG one-

soliton state is rotated in SU(3) flavor space by a time- dependent A(t). In subsection 4.2

the lowest-energy baryon state with baryon number NC is introduced. The possible vi-

brational modes are briefly discussed in subsection 4.3. Section 5 discusses the first and

higher multiplet exotic baryons and provides the relevant quantum corrections the their

masses, the ratio M35/M10, and an estimate for the exotic baryon radius parameter. The

last section presents a summary and some discussions. In the appendix we provide the

GSG solitons and kink solutions relevant to our QCD2 discussion.

2. Baryons in bosonized QCD2

2.1 The bosonized effective action

The QCD2 action is written in terms of gauge fields Aµ and fundamental quark fields ψ as

SF [ψ,Aµ] =

∫
d2x

{
− 1

2e2
c

Tr(FµνFµν) − ψ̄ai[(i∂/ + a/)]ψai + Mijψ̄
aiψaj

}
, (2.1)

where a is the color index (a = 1, 2, . . . , NC) and i the flavor index (i = 1, 2, . . . , Nf ), ec,

with dimension of a mass, is the quark coupling to the gauge fields, the matrix Mij = miδij

(mi being the quark masses) takes into account the quark mass splitting, and Fµν ≡
∂µAν − ∂νAµ + i[Aµ, Aν ] is the gauge field strength.

The bosonized action in the strong-coupling limit (ec À all mi) becomes [4, 6]

Seff [g] = NcS[g] + m2Nm

∫
d2xTrf

[
D(g + g†)

]
, (2.2)

where g is a matrix representing U(Nf ), D = M
m0

, m0 is an arbitrary mass parameter and

the effective mass scale m is given by

m =

[
Nccm0

(
ec
√

NF√
2π

)∆c
] 1

1+∆c

, (2.3)

with

∆c =
N2

c − 1

Nc(Nc + NF )
. (2.4)

In (2.2) S[g] is the WZNW action and Nm stands for normal ordering with respect to

m. In the large Nc limit, which we use below to justify the semi-classical approximation,

the scale m becomes

m = 0.59N
1
4

F

√
Ncecm0, (2.5)
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so, m takes the value 0.77
√

Ncecm0 for three flavors. Notice that we first take the strong-

coupling limit ec À all mi, and then take Nc to be large, thus it is different from the ’t

Hooft limit [3], where e2
cNc is held fixed.

Following the Skyrme model approach it is useful to first ask for classical soliton

solutions of the bosonic action which are heavy in the NC →large limit. The action (2.2)

is a massive WZNW action and possesses the property that if g is non-diagonal it can not

be a classical solution, as after a diagonalization to

g0 = diag(e−iβ0Φ1(x), e−iβ0Φ2(x), . . . e
−iβ0ΦNf

(x)
),

∑

i

Φi(x) = φ(x), β0 ≡
√

4π

NC
(2.6)

it will have lower energy [24]. Thus, the minimal energy solutions of the massive WZNW

model are necessarily in a diagonal form. The majority of particles given by (2.6) are not

going to be stable, but must decay into others.

Previous works consider the diagonal form (2.6) such that the action (2.2) reduces to

a sum of Nf independent ordinary sine-Gordon models, each one for the corresponding Φi

field and parameters

m̃2
i =

mi

m0
m2. (2.7)

In this approach the lowest lying baryon is represented by the minimum-energy con-

figuration for this class of ansatz, i.e.

ĝ0(x) = diag
(
1, 1, . . . , e

−i
q

4π
NC

ΦNf

)
, (2.8)

with mNf
chosen to be the smallest mass.

In this paper we will consider the ansatz (2.6) for

Nf =
n

2
(n − 1), Nf ≡ number of positive roots of su(n), (2.9)

such that (n−2)(n−1)
2 linear constraints are imposed on the fields Φi. This model corre-

sponds to the generalized sine-Gordon model (GSG) recently studied in the context of the

bosonization of the so-called generalized massive Thirring model (GMT) with Nf fermion

species [19, 20, 22]. The classical GSG model and some of its properties, such as the alge-

braic construction based on the affine sl(n,C) Kac-Moody algebra and the soliton spectrum

has been the subject of a recent paper [21].

The WZ term in (2.2) vanishes for either static or diagonal solution, so, for the

ansatz (2.6) and after redefining the additive constant term the action becomes

S[g0] =

∫
d2x

Nf∑

i=1

[
1

2
(∂µΦi)

2 + 2m̃2
i

(
cosβ0Φi − 1

)]
, (2.10)

with coupling β0 and mass parameters m̃i defined in (2.6) and (2.7), respectively.

The Φi fields in (2.10) satisfy certain constraints of the type

Φp =
n−1∑

i=1

σpiΦi, p = n, n + 1, . . . , Nf (2.11)
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where σp i are some constant parameters. From the Lie algebraic construction of the GSG

model these parameters arise from the relationship between the positive and simple roots of

su(n). Even though our treatment until section 3 is valid for any Nf , starting in section 4

we will concentrate on the Nf = 3 case.

It is interesting to recognize the similarity between the potential of the model (2.10)–

(2.11) for the Nf = 3 case [in su(3) GSG model one has n = Nf = 3 and just one constraint

equation in (2.11)] and the effective chiral Lagrangian proposed by Witten to describe low-

energy behavior of four dimensional QCD [25]. In Witten’s approach the potential term

reads

V Witten(U) = f2
π

[
− 1

2
TrM(U + U †) +

k

2NC
(−ilnDet U − θ)2

]
, (2.12)

where U is the pseudoscalar field matrix and M = diag
(
mu;md;ms

)
is the quark mass

matrix. Phenomenologically m2
η′ À m2

π, m2
K , m2

η, implying that k
NC

> bms À bmu, bmd

[the parameter b is O(Λ), where Λ is a hadronic scale). Because M is diagonal, one can

look for a minimum of V Witten(U) in the form U = diag
(
eiφ1 , eiφ2 , eiφ3

)
. Since the

second term dominates over the first, one has
∑

φj = θ up to the first approximation. So,

choosing θ = 0, (2.12) reduces to a model of type (2.10)–(2.11) defined for Nf = 3. This is

the sl(3) GSG model, which possesses soliton and kink type solutions (see the appendix),

and will be the main ingredient of our developments in sections 4 and 5.

The potential term in (2.10) is invariant under

Φi → Φi +
1

β0
2πNi, (Ni ∈ ZZ). (2.13)

All finite energy configurations, whether static or time-dependent, can be divided into

an infinite number of topological sectors, each characterized by a set

[
n1, n2, . . . , nNf

]
=

[
(N+

1 − N−
1 ), (N+

2 − N−
2 ), . . . , (N+

Nf
− N−

Nf
)

]
(2.14)

Φi(±∞) =
1

β0
2πN±

i (2.15)

corresponding to the asymptotic values of the fields at x = ±∞. The n′
is satisfy certain

relationship arising from the constraints (2.11) and the invariance (2.13) (some examples

are given in the appendix for the soliton and kink type solutions in the SU(3) case).

Conserved charges, corresponding to the vector current Jµ
ij = ψ̄a

i γµψa
j , can be com-

puted as

QA[g(x)] =

∫
dx[J0(

TA

2
)], (2.16)

where (T A

2 ) are the su(n) generators and the U(1) baryon number is obtained using the

identity matrix instead of (T A

2 ). For g0 given in eq. (2.6) the baryon number of any given

flavor j is given by Qj
B = Ncnj, so, the total baryon number becomes

QB = NC(n1 + n2 + · · · + nNf
), (2.17)
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and the “hypercharge” is given by

QY =
1

2
Tr

∫
dx

(
J0λN2

f
−1

)

=
1

2
NC

(
n1 + n2 + · · · + nNf−1 − (Nf − 1)nNf

)√
2

N2
f − Nf

. (2.18)

The total baryon number is clearly an integer multiple of NC . In the case

of (2.8) they reduce to QB = NC and Q0
Y = −1

2

√
2(Nf − 1)/NF NC , respectively [for√

4π/NCΦNf
(+∞) = 2π, ΦNf

(−∞) = 0] [4]. We are choosing the convention in which

the quarks have baryon number QB = 1, so the soliton representing a physical baryon has

baryon number NC .

A global UV (Nf ) transformation g̃0 = Ag0(x)A−1 is expected to turn on the other

charges. Let us introduce

A =




z
(1)
1 . . . z

(Nf )
1

z
(1)
2 . . . z

(Nf )
2

z
(1)
Nf

. . . z
(Nf )
Nf


 , (2.19)

Nf∑

p=1

z(i)
p z(j) ?

p = δij . (2.20)

Now

g̃0 =

Nf∑

j=1

eiβjΦjZZ
(j), ZZ

(j)
p q = z(j)

p z(j) ?
q , (2.21)

The charges with g̃0 are

(Q̃0)A =
1

2
NCTr

∑

i

(
niT

A
ZZ

(i)
)

(2.22)

The baryon number is unchanged. The U(n) possible representations will be discussed

below in the semi-classical quantization approach.

3. Semi-classical quantization and the GSG ansatz

In order to implement the semi-classical quantization let us consider

g(x, t) = A(t)g0(x)A−1(t), A(t) ∈ U(Nf ) (3.1)

and derive the effective action for A(t) by substituting g(x, t) into the original action. So,

following similar steps to the ones developed in [4] one can get

S̃(g(x, t)) − S̃(g0(x)) =
NC

8π

∫
d2xTr

([
A−1Ȧ , g0

][
A−1Ȧ , g†0

])
+

NC

2π

∫
d2xTr{(A−1Ȧ)(g†0∂xg0)} + m2Tr

∫
d2x[(DAg0A

† −Dg0) + c.c.] (3.2)
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The action above for Dij = δij (in this case the last integrand after taking the trace

operation vanishes identically) is invariant under global U(Nf ) transformation

A → UA, (3.3)

where U ∈ G = U(Nf ). This corresponds to the invariance of the original action (with

mass of the same magnitude for all flavors) under g → UgU−1. It is also invariant under

the local changes

A(t) → A(t)V (t), (3.4)

where V (t) ∈ H. This subgroup H of G is nothing but the invariance group of g0. Below

we will find some particular cases of H.

We define the Lie algebra valued variables qi, ya through A−1Ȧ = i
∑{q̇iEαi

+ẏaH
a} in

the generalized Gell-Mann representation [26]. In terms of these variables the action (3.2),

for a diagonal mass matrix such that Dij = δij , takes the form

S[q, y] =

∫
dt{

Nf∑

i=1

1

2Mi
q̇i q̇−i −

Nf−1∑

a=1

√
2

(a + 1)2 − (a + 1)
×

× (n1 + n2 + · · · + na − ana+1) ẏa}, (3.5)

where q±i are associated to the positive and negative roots, respectively, and

1

2Mi
=

NC

2π

∫ +∞

−∞
[1 − cosβ0Φi], Φi 6= 0. (3.6)

In the case of vanishing Φj ≡ 0 for a given j one must formally set Mj = +∞ in the

relevant terms throughout.

In the case of ĝ0 = diag(1, 1, . . . , e
iβNf

ΦNf ) the second summation in (3.5) reduces to

the unique term [−Nc

√
2(Nf−1)

Nf
ẏNf−1] [4].

When written in terms of the general diagonal field g0(x) and the U(Nf ) field A(t),

the charges associated to the global U(Nf ) symmetry, (2.16), become

QB = i
NC

8π

∫
dxTr{TBA{(g†0∂xg0 − g0∂xg†0) + [g0 , [A−1Ȧ , g†0]]}A−1} (3.7)

A convenient parameterization, instead of the parameters used in (3.5), is (2.19) since

in the above expressions, for QB and the action (3.2), there appear the fields A,A−1, as

well as their time derivatives. Now, for a diagonal mass matrix such that D = mi

m0
δij ,

the expression (3.2) can be written in terms of the variables z
(i)
p subject to the relation-

ships (2.20)

S̃(g(x, t)) − S̃(g0(x)) = S[z(i)
p (t),Φi(x)] (3.8)

S[z(i)
p (t),Φi(x)] =

NC

2π

∫
d2x

∑

p,q; i<j

[cos(βiΦi − βjΦj) − 1][ż(i)
p z(i) ?

q ż(j)
q z(j) ?

p ] −

i
NC

2π

∫
d2x

∑

i,p

βi∂xΦiż
(i)
p z(i) ?

p +

∫
dt 2[

∑

i,p

cos(βiΦi)m̃
2
pz

(i)
p z(i) ?

p −
∑

i

cos(βiΦi)m̃
2
i ] (3.9)
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Let us choose the index k corresponding to the smallest mass mk. So, integrating over

x in (3.9) we may write

S[z(i)
p (t)] = −1

2

∫
dt

Nf∑

i<j

Nf∑

p,q

M−1
ij ż(i)

p z(i) ?
q ż(j)

q z(j) ?
p −

i
NC

2

∫
dt

∑

i

ni

[
ż(i)
p z(i) ?

p − z(i)
p ż(i) ?

p

]
−

2π

Nc

∫
dt

{ ∑

i, p

[m̃2
p

Mi
− m̃2

k

Mk

]
z(i)
p z(i) ?

p +
2π

Nc

[∑

i

m̃2
i

Mi
− m̃2

k

Mk
Nφ

]}

+

∫
dt(z(i)

p z(j) ?
p − δij)λij (3.10)

where Nφ is the number of nonvanishing Φi fields and we have introduced some Lagrange

multipliers enforcing the relationships (2.20). The constants Mij above are defined by

1

2Mij
≡ NC

2π

∫
dx[1 − cos(β0Φi − β0Φj)]; i < j. (3.11)

If the field solutions are such that Φi = Φj, then one must set formally Mij → +∞ in

place of the corresponding constants.

Likewise, we can write the U(Nf ) charges, eq. (3.7), in terms of the z
(i)
p variables

QA =
1

2
TA

βαQαβ,

Qαβ = NC

∑

j

nj z(j)
α z

(j) ?
β − i

2

∑

i,j

M−1
ij z(j)

α z(j) ?
γ ż(i)

γ z
(i) ?
β . (3.12)

The second U(Nf ) Casimir operator is obtained from the charge matrix elements Qαβ

QAQA =
1

2
QαβQβα,

=
1

2
N2

C

∑

i

nini −
1

4

∑

i<j

(
M−1

ij

)2
ż(j)
α z

(j) ?
β ż

(i)
β z(i) ?

α (3.13)

The expressions above greatly simplify in certain particular cases of the ansatz (2.6),

the ansatz (2.8) has been studied extensively in the literature before. In the next subsection

we review this case and in further sections we analyze the semiclassical quantization of the

GSG ansatz given for Nf = 3 flavors.

3.1 Review of usual sine-Gordon soliton and baryons in QCD2

In this subsection we briefly review the formalism applied to the ansatz (2.8), which is

related to the usual SG one-soliton as the lowest baryon state. In order to calculate the

quantum correction it is allowed the sine-Gordon soliton to rotate in SU(Nf ) space by a

time dependent matrix A(t) as in (3.1). Let us consider the single baryon state defined for
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the ansatz (2.8) for the sine-Gordon soliton solution ΦNf
≡ Φ1−soliton [ Φ1−soliton is given

by (1.1)]; so, in the relations above one must set

nNf
= 1; nj = 0 (j 6= Nf ); M−1

j k ≡ 0 (j < k < Nf ); M−1
j Nf

≡ M−1
Nf

(j < Nf ), (3.14)

where M−1
Nf

can be computed using eq. (3.6) for i = Nf for the soliton (1.1)

1

2MNf

=
1√
2 m̃

(
NC

π
)3/2 (3.15)

Then, for the ansatz (2.8), i.e. ĝ0(x) = diag
(
1, 1, . . . , e

−i
q

4π
NC

ΦNf

)
, the effective ac-

tion (3.10) can be written as

S[z
(Nf )
j (t)] =

1

2MNf

∫
dt[ż

(Nf ) ?
j ż

(Nf )
j − (z

(Nf ) ?
i ż

(Nf )
i )(ż

(Nf ) ?
k z

(Nf )
k )]

− 2π

MNf
NC

∫
dt

Nf∑

i=1

(
m̃2

i − m̃2
Nf

)
z
(Nf ) ?
i z

(Nf )
i

−i
NC

2

∫
dt nNf

(
z
(Nf ) ?
j ż

(Nf )
j − ż

(Nf ) ?
j z

(Nf )
j

)

+

∫
dt[(z

(Nf )
p z

(Nf ) ?
q − δpq)λ

pq], (3.16)

where nNf
= 1, MNf

is given by (3.15) and mNf
entering m̃Nf

is chosen to be the smallest

quark mass. Notice that for equal quark masses the second line in eq. (3.16) vanishes

identically. According to (3.3)–(3.4), the symmetries of S[z
(Nf )
j (t)] are the global U(Nf )

group (for equal quark masses) under which

z
(Nf )
α → z

′ (Nf )
α = Uαβz

(Nf )
β , U ∈ U(Nf ), (3.17)

and a local U(1) subgroup of H under which

z
(Nf )
α → z

′ (Nf )
α = eiδ(t)z

(Nf )
α . (3.18)

The action (3.16) has been considered in order to find the quantum correction to the

soliton mass for certain representations R of the flavor symmetry SU(Nf ). The case of

equal quark masses has been studied in the literature [4, 5, 7, 27]. Certain properties in

the case of different quark masses have been considered in [6] for the ansatz (2.8).

In this approach the minimum-energy configuration for the class of ansatz (2.8), with

mNf
the smallest mass, corresponds to the state of lowest-lying baryon [4] which in the

large-NC limit possesses the classical mass

M cl
baryon = 4m̃Nf

(2NC

π

)1/2
≈ 1.90N

1/4
f

√
ecmNf

NC , (3.19)

where m̃Nf
has been given in (2.7) for i = Nf .
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Moreover, for the Ansatz (2.8) the SU(Nf ) charges become

Qαβ = NCnNf
z
(Nf )
α z

(Nf ) ?
β +

i

2MNf

[
z
(Nf )
α z

(Nf ) ?
β

(
ż
(Nf )
δ z

(Nf ) ?
δ − z

(Nf )
δ ż

(Nf ) ?
δ

)

+z
(Nf )
α ż

(Nf ) ?
β − ż

(Nf )
α z

(Nf ) ?
β

]
(3.20)

The corresponding second Casimir can be obtained from (3.13)

QAQA =
1

2
QαβQβα =

1

2
N2

Cn2
Nf

+
1

4M2
Nf

(
Dz

)†

α

(
Dz

)
α
, Dz ≡ ż − z(z†ż) (3.21)

Moreover, denoting the SU(Nf ) second Casimir operator by C2(Nf ) one can write

QAQA = C2(Nf ) +
1

2Nf
(QB)2, (3.22)

where QB is the baryon number (2.17), which in this case reduces to QB = NC .

In the case of a single baryon given by ĝ0, eq. (2.8), and for unequal quark masses,

the hamiltonian is linear in the quadratic Casimir operator. To see this we now derive the

hamiltonian corresponding to the action (3.16). The canonical momenta are given by

pα =
∂ L

∂ż
(Nf ) ?
α

=
1

2MNf

[
ż
(Nf )
α −

(
ż
(Nf )
β z

(Nf ) ?
β

)
z
(Nf )
α

]
+

iNC

2
z

Nf
α (3.23)

and there is a conjugate expression for pα. Therefore, from H = pαż
(Nf ) ?
β + p?

αż
(Nf )
β − L,

one can get the hamiltonian

H =
1

2MNf

(
Dz

)†

α

(
Dz

)
α

+
2π

MNf
NC

Nf∑

i=1

(
m̃2

i − m̃2
Nf

)
z
(Nf ) ?
i z

(Nf )
i . (3.24)

However, one must take a proper care of the relevant constraint (2.20) which was

incorporated through the addition of a Lagrange multiplier in the action (3.16). A proper

treatment of a constrained system must be performed at this point [4]. In [4, 27] it was

shown that the local U(1) gauge symmetry (3.18) leads to the constraint

QNf Nf
= 0 ⇒ QB =

√
2Nf (Nf − 1) QY (3.25)

which has to be imposed on physical states. This implies that the representation R must

contain a state with Y charge

Q̄Y =

√
1

2Nf (Nf − 1)
NC . (3.26)

The remaining states will be generated through the application of the SU(Nf ) trans-

formations to this one. For states with only quarks and no antiquarks, the condition that

QB = NC implies that only representations described by Young tableaux with NC boxes

appear. The additional constraint that QY = Q̄Y implies that all NC quarks belong to
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SU(Nf − 1), i.e., this state does not involve the N
′th
f quark flavor. These constraints are

automatically satisfied in the totally symmetric representation of NC boxes, which is the

only representation possible in two dimensions. This is because the state wave functions

have to be constructed out of the components of the complex vector z(Nf ) as

ψ(z(Nf ) , z(Nf ) ?) = (z
(Nf )
1 )p1 . . . (z

(Nf )
Nf

)
pNf (z

(Nf ) ?
1 )q1 . . . (z

(Nf ) ?
Nf

)
qNf (3.27)

with
∑Nf

i=1(pi − qi) = NC .

The lowest such multiplet has

Nf∑

i=1

pi = NC and all qi = 0 . (3.28)

This multiplet corresponds to the Young tableaux

Nc︷ ︸︸ ︷
¤ · · ·¤ (3.29)

In QCD2 for NC = 3, NF = 3 we get only the 10 of SU(3).

Then, taking into account (3.21), (3.22) and (2.7), the expression (3.24) becomes [4, 6]

H = M cl
baryon

{
1 +

(
π

2NC

)2[
C2(R) −

n2
Nf

N2
C

2Nf
(Nf − 1)

]
+

Nf∑

i=1

mi − mNf

mNf

|z(Nf )
i |2

}
, (3.30)

where M cl
baryon is given by (3.19) and C2(R) is the value of the quadratic Casimir for the

flavor representation R of the baryon. For a baryon state given by SG 1-soliton solution

one must set nNf
= 1 in the hamiltonian above. Notice that the Hamiltonian depends on

m0 only through M cl
baryon, so the overall mass scale is undetermined, only the mass ratios

are meaningful. The mass term contributions come from quantum fluctuations around the

classical soliton, consistency with the semi-classical approximation requires that it be very

small compared to one. However, these terms vanish for equal quark masses [4, 5]. The 10

baryon mass becomes

M(baryon) = Mclassical

[
1 +

(
π2

8

)
Nf − 1

NC

]
. (3.31)

Notice that the quantum correction is suppressed by a factor of NC . Moreover, the

quantum correction for NC = 3, Nf = 3 numerically becomes ∼ 0.82.

The hamiltonian (3.30) taken for equal quark masses has been used to compute the

energy of the first exotic baryon E1(a state containing NC + 1 quarks and just one anti-

quark) by taking the corresponding Casimir C2(E1) for R = 35 of flavor relevant to the

exotic state [5]. For further analysis we record the mass of this exotic baryon

M(E1) = M(classical)
[
1 +

π2

8

1

NC

(
3 + Nf − 6

Nf

)
+

3π2

8

1

N2
C

(
Nf − 3

Nf

)]
. (3.32)

– 12 –



J
H
E
P
0
3
(
2
0
0
7
)
0
5
5

In the interesting case NC = 3, Nf = 3 this becomes

M(35) = M(classical)
{

1 +
π2

4

}
. (3.33)

In this case the correction due to quantum fluctuations around the classical solution

is larger than the classical term. So, the semi-classical approximation may not be a good

approximation. However, observe that the ratio M(35)/M(10) ∼ 1.9, which is 17% larger

than the ratio between the experimental masses of the Θ+ and the nucleon. See more on

this point below. These semi-classical approximations may be improved by introducing

different ansatz for g0 and considering unequal quark mass parameters. These points will

be tackled in the next sections.

4. The GSG model, the unequal quark masses and baryon states

In the following we will concentrate on the effective action (3.10) for the particular case

Nf = 3 and unequal quark mass parameters. So, the SU(3) flavor symmetry is broken

explicitly by the mass terms.

The effective Lagrangian in the case of Nf = 3 from (3.10), upon using (2.20), can be

written as

S[z(i)
p (t)] =

1

4

∫
dt

{(
M−1

12 + M−1
13 − M−1

23

)[
ż(1)
α ż(1) ?

α − ż(1)
α z(1) ?

α z
(1)
β ż

(1) ?
β

]
+

(
M−1

12 − M−1
13 + M−1

23

)[
ż(2)
α ż(2) ?

α − ż(2)
α z(2) ?

α z
(2)
β ż

(2) ?
β

]
+

(
− M−1

12 + M−1
13 + M−1

23

)[
ż(3)
α ż(3) ?

α − ż(3)
α z(3) ?

α z
(3)
β ż

(3) ?
β

]}
−

i
NC

2

∫
dt

∑

i,p

ni

[
ż(i)
p z(i) ?

p − z(i)
p ż(i) ?

p

]
−

∫
dt

{ 2π

Nc

∑

i, p

[m̃2
p

Mi
− m̃2

k

Mk

]
z(i)
p z(i) ?

p +
2π

Nc

[∑

i

m̃2
i

Mi
− m̃2

k

Mk
Nφ

]}
(4.1)

From (3.13) and following similar steps the second U(3) Casimir operator can be writ-

ten as

QAQA =
1

2
QαβQβα,

=
1

2
N2

C

∑

j

njnj +
1

8

{(
M−2

12 + M−2
13 − M−2

23

)[
ż(1)
α ż(1) ?

α − ż(1)
α z(1) ?

α z
(1)
β ż

(1) ?
β

]
+

(
M−2

12 − M−2
13 + M−2

23

)[
ż(2)
α ż(2) ?

α − ż(2)
α z(2) ?

α z
(2)
β ż

(2) ?
β

]
+

(
− M−2

12 + M−2
13 + M−2

23

)[
ż(3)
α ż(3) ?

α − ż(3)
α z(3) ?

α z
(3)
β ż

(3) ?
β

]}
. (4.2)

As a particular case for the ansatz (2.8) let us take Nf = 3, so n1 = n2 = 0 in (2.14).

In (3.11) one can set formally M12 ≡ +∞ and in view of (3.6) the remaining parameters

can be written as M13 = M23 ≡ M3. Thus, taking into account these parameters the
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expressions for the action (4.1) and the second Casimir (4.2) reduce to the well known

ones (3.16) and (3.21), respectively.

Next, we discuss the action (4.1) and the second Casimir (4.2) operator for the soliton

and kink type solutions of the GSG model. In appendices A.1, A.2 and A.3 we classify these

type of solutions. There are three 1−soliton solutions [see eqs. (A.13), (A.20) and (A.28)]

which correspond to baryon number NC [see eqs. (A.19), (A.26) and (A.33)], because the

GSG model possesses the symmetry (A.11) the third soliton is doubly degenerated. From

the fields relationships (A.17), (A.24) and (A.31) one has the three 1−soliton cases

i) Φ1 = −Φ2 = Φ3 = ϕ1 ⇒ M13 = +∞, M12 = M23 ≡ M2; M1 = M2 = M3 = M̃2,

(4.3)

ii) −Φ1 = Φ2 = Φ3 = ϕ2 ⇒ M23 = +∞, M12 = M13 ≡ M1; M1 = M2 = M3 = M̃1,

(4.4)

iii) Φ1 = Φ2 = −Φ3 = ϕ̂ ⇒ M12 = +∞, M13 = M23 ≡ M3; M1 = M2 = M3 = M̃3

(4.5)

where the eqs. (3.11) and (3.6) have been used, respectively, to define the parameters Mj

and M̃j in the right hand sides of the relationships above.

In appendix A.5 we record the kink type solution [see eq. (A.49)] which corresponds

to the GSG reduced model called double sine-Gordon theory. This solution corresponds to

baryon number 4NC [see eq. (A.53)]. Thus, from (A.46), (3.11) and (3.6) one has

Φ1 =Φ2 =
1

2
Φ3 =

1

2
φ ⇒ M12 =+∞, M13 = M23≡MK ; M1 =M2≡MK , M3≡M2K .(4.6)

The solutions with baryon numbers 2NC and 3NC correspond to composite configura-

tions formed by multi-solitons of the GSG model. These states (i.e. multi-baryons) deserve

a careful treatment which we hope to undertake in future.

4.1 GSG solitons and the states with baryon number NC

For the particular cases (4.3)–(4.5) one can rewrite the action (4.1) such that for each case

the terms quadratic in time derivatives reduce to a term depending only on one variable,

say z
(l̂)
i , related to the l̂’th column of the matrix A. The reason is that the symmetries

of the quantum mechanical lagrangian and actual manifold on which A(t) lives depend on

the properties of the ansatz g0. For the ansatz g0 related to the GSG model one can see

that the space-time dependent field g in eq. (3.1) can be rewritten only in terms of certain

columns of A. For example, in the case (4.5) above the matrix g(x, t) can be written as

gαβ(x, t) = [Ag0A
−1]αβ

= δαβeiβ0ϕ̂ − 2i sin(β0ϕ̂)z(3)
α z

(3) ?
β , (4.7)

which clearly depends only on the third column of A. So, we may think the left hand

side of (3.2), i.e. [S̃(g(x, t)) − S̃(g0(x))], entering the expression of the semi-classical

quantization approach, would in principle be written only in terms of the third column of
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A. However, in order to envisage certain local symmetries it is useful to write the terms

first order in time derivatives as depending on the full parameters z
(j)
i of the field A. These

terms arise from the WZW term and provides the Gauss law type Nz number conservation

law [See eq. (4.14) below]. An additional SU(2) ∈ H (see (4.8)) local symmetry will be

described below. Moreover, this picture is in accordance with the counting of the degrees

of freedom. In fact, the effective action (3.2) possesses the local gauge symmetry (3.4),

where in the case of field configuration (4.5) the gauge group H becomes

H = SU(2) × U(1)B × U(1)Y , (4.8)

with the last two U(1) factors related to baryon number and hypercharge, respectively.

Thus, the effective action (4.1) will be an action for the coordination describing the coset

space G/H = SU(3)×U(1)B/SU(2)×U(1)B×U(1)Y = CP 2. The Φi fields and symmetries

of g0 also determine the values and relationships between the parameters Mij in (4.3)–(4.5),

such that certain coefficients in (4.1) depending on these parameters vanish identically, thus

leaving a subset of z
(j)
i variables which must be consistent with the counting of the degrees

of freedom. For example this picture is illustrated in the case (4.5) where the coefficients

(M−1
12 +M−1

13 −M−1
23 ) and (M−1

12 −M−1
13 +M−1

23 ) vanish identically, leaving an action with

kinetic term depending only on the variables z
(3)
α . However, the mass and WZW terms are

conveniently written in terms of the complete z
(j)
i variables.

So, for each case in (4.3)–(4.5) labelled by l̂, the action can be written as

S[z(i)
p (t)] =

1

2

∫
dtM−1

l̂

[
ż(l̂)
α ż(l̂) ?

α − ż(l̂)
α z(l̂) ?

α z
(l̂)
β ż

(l̂) ?
β

]
−

i
NC

2

∫
dt

∑

i, p

ni

[
ż(i)
p z(i) ?

p − z(i)
p ż(i) ?

p

]
− 2π

NcM̃l̂

∫
dt

∑

i, j

m̃2
i |z

(j)
i |2. (4.9)

In the relation above we must assign the relevant set of values to the indices ni (i =

1, 2, 3) (see appendix) for the relevant case in (4.3)–(4.5). The first term in (4.9) is the

usual CP2 quantum mechanical action, while the terms first order in time-derivatives are

modifications due to the WZ term, as arisen from (3.2) and (3.10). Notice that the last

term was originated from the unequal quark mass terms.

Following similar steps as in the single baryon case (see eqs. (3.23)–(3.24)) one can

obtain the hamiltonian

H =
1

2Ml̂

(
Dz(l̂)

)†

α

(
Dz(l̂)

)
α

+
2π

NcM̃l̂

∑

i, j

m̃2
i |z

(j)
i |2, (4.10)

where
(
Dz(l̂)

)
α

= ż
(l̂)
α − z

(l̂)
α (z

(l̂) ?
β ż

(l̂)
β ).

Similarly, the corresponding second Casimir becomes

QAQA =
1

2
QαβQβα,

=
1

2
N2

C

∑

i

|ni|2 +
1

4M2
l̂

(
Dz(l̂)

)†

α

(
Dz(l̂)

)
α

(4.11)
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Then from (4.10)–(4.11) and taking into account QAQA = C2 + 1
2Nf

∑
i(Qi

B)2 one can

get

H = 2Ml̂

(
C2 +

1

2Nf

∑

i

(Qi
B)2 − 1

2
N2

C

∑

i

|ni|2
)

+
2π

NcM̃l̂

3∑

i,j=1

m̃2
i |z

(j)
i |2, (4.12)

where Qi
B = niNC for a convenient choice of the indices ni, which in the cases (4.3)–(4.5)

is simply |ni| = 1 [see also eqs. (A.19), (A.26) and (A.33) for 1-soliton configurations]. The

parameters Ml̂, M̃l̂ can be computed for the relevant solitons. They become

1

2Ml̂

=
1

m̃

2
√

2

3

(
NC

π

)3/2

,
1

2M̃l̂

=
1√
2 m̃

(
NC

π

)3/2

(4.13)

Some comments concerning the two hamiltonians (3.30) and (4.12) are in order here.

Even though they correspond to one baryon state (baryon number NC) they look different.

In fact, the hamiltonian (4.12) incorporates additional terms. First, due to the ansatz (2.6)

related to the GSG model one has some set of field solutions comprising in total three

possibilities (4.3)–(4.5) with baryon number NC , each case being characterized by the set

of parameters Ml̂, M̃l̂ and relevant combinations of the indices nj which are related to the

baryon number of the configuration {Φj}, j = 1, 2, 3. So, the terms −N2
C

2 and
N2

C

2Nf
in (3.30)

translate to −N2
C

2

∑
i n

2
i and 1

2Nf

∑
i(Qi

B)2, respectively, in the new hamiltonian (4.12).

Second, the mass term expression allows an exact summation due to unitarity, thus giving a

constant additional term to the hamiltonian (see below). The corresponding term in (3.30),

obtained in [6], does not permit an exact summation.

4.2 Lowest lying baryon state and the GSG soliton

So far, the treatment for each case (4.3)–(4.5) followed similar steps; however, in order to

compute the quantum correction to the soliton mass we choose the one from the classifi-

cation (4.3)–(4.5) with the minimum classical energy solution. Thus, taking into account

the “physically” motivated inequalities m3 < m1 < m2 ( or µ3 < µ1 < µ2) [eq. (A.51)

relates the µj ’s and the mj ’s] one observes that the soliton with mass M sol
2 [see eq. (A.23)]

possesses the smallest mass according to the relationship (A.34). This corresponds to the

second case (4.4) classified above; so one must set the index l̂ = 1 in the action (4.9).

The variation of the action (4.9) under z
(j)
α → eiδ(t)z

(j)
α is due to the WZW term:

∆S = Nc(n1 + n2 + n3)
∫

dt δ̇. This implies

Nz =
∆S

∆δ̇
= Nc

(
n1 + n2 + n3

)
, (4.14)

which is an analog of the Gauss law, and restricts the allowed physical states [28]. For the

soliton configuration with baryon number NC , (4.4), under consideration in this subsection,

we have n1 = −n2 = −n3 = −1 → n1 + n2 + n3 = 1 [see eq. (A.25) ] implying

Nz = NC . (4.15)
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Therefore, for any wave function, written as a polynomial in z and z? the number

of the z minus the number of the z? must be equal to NC . But due to a larger local

symmetry we will have more restrictions. Thus, as commented earlier the (massless part)

effective action (4.9) is invariant under the local SU(2) symmetry. This can be easily seen

by defining “local gauge potentials”

Ãβα(t) = −
∑

p

z(β) ?
p ż(α)

p , α, β = 2, 3. (4.16)

Under the local gauge transformation corresponding to Λ(t), one has

Ã(t) → eiΛÃe−iΛ + ∂te
iΛe−iΛ. (4.17)

Then we have that the WZW term in (4.9) for the variables zα
p , α = 2, 3 (take l̂ = 1,

n2 = n3 = 1) remain invariant under the transformation (4.17)

iNC

∫
dt Tr ż(α) ?

p z(β)
p ≡ iNC

∫
dt Tr Ã ⇒ iNC

∫
dt TrÃ (4.18)

Remember that the variables zα
p do not appear in the kinetic term of (4.9). The local

symmetry above imply that the allowed physical states must be singlets under the SU(2)

symmetry in flavor space. So, the wave functions for z′s only (analogous to quarks only

for QCD) must be of the form

ψ2(z) = ΠNC

i=1

(
εα1α2

z
(α1)
i1

z
(α2)
i2

)
, α1, α2 = 2, 3, (4.19)

where 1 ≤ i1, i2 ≤ Nf .

Then, taking into account the restrictions of the types (4.15) and (4.19) the most

general state can be written as

ψ̃(z, z?) = ψ2(z)
[
Π{p,q}(z

(α) ?
p z(α)

q )npq

]
, (4.20)

and the products are defined for some sets of indices. This wave function generalizes the

one given in (3.27).

Next, let us compute the mass of the state represented for wave functions of the form

ψ̃(t) = ψ2(z)Πi(z
(1)
i )pi where (

∑Nf

i=1 pi = NC).

Combining the hamiltonian (4.12), the relevant parameters (4.13) and the classical

soliton mass term, for the R baryon we have

M(baryon) = Mclassical

{
1 +

3

4
(

π

2NC
)2

[
C2(R) − N2

C

2
(Nf − 1) +

1

2m̃2

∑

i

m̃2
i

]}
(4.21)

where

Mclassical = 4m̃

(
2NC

π

)1/2

, m̃2 =
1

13

(
m2

m0

)(
6m1 + 3m2

)
. (4.22)
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The last term in (4.12) simplifies to a constant term by unitarity condition of the

matrix elements z
(j)
i and the parameter m̃ corresponds to the one-soliton parameter once

the identification γ2
2 = 2β2

0m̃2 is made in (A.22) by comparing the SG one-solitons (1.1)

and (A.20). Even though the computations are explicitly made for Nf = 3 it is instructive

to leave the number of flavors as a variable. In the case of the 10 baryon one has

M(baryon) = Mclassical

[
1 +

3π2

32

Nf − 1

NC
− 3π2

32

(Nf − 1)2

Nf
+

3

2

]
. (4.23)

In the following we discuss the correction terms to the earlier expression (3.31) for the

10 baryon as compared to the last improved expression (4.23). The quantum correction

of (3.31) is multiplied by 3/4 and the last two terms in (4.23) are new contributions due

to the GSG ansatz used and the unequal quark mass terms. The last term contribution

in (4.21) was simplified providing a numerical term 3/2 in (4.23) thanks to unitarity and

the relationship between the quark masses (A.22) which is a condition to get the relevant

soliton solution. This term apparently may not be consistent with a quantum correction

around the classical solution since consistency with the semi-classical approximation re-

quires it be small compared to one. However, this term must be combined with the third

term which gives a negative value contribution and is an additional term independent of

NC , as is the last numerical 3/2 term under discussion. In fact, for NC = 3, Nf = 3,

numerically these two terms contribute ∼ 0.27, which is acceptable. The NC dependent

term numerically becomes ∼ 0.62 (the term 0.82 of (3.31) has been multiplied by 3/4).

Adding all the quantum contributions one has 0.89, which increases the earlier numerical

value 0.86 of (3.31) in ∼ 3.5%. In fact, this is a small correction to the already known

value which was obtained using the ansatz (2.8) in [4, 5].

4.3 Possible vibrational modes and the GSG model

The only static soliton configurations with baryon number NC , which emerge in the strong-

coupling regime of QCD2, are the ones we have considered above in eqs. (4.3)–(4.5). Pre-

cisely, these are the one-solitons of the GSG model which, in subsection 4.2, have been the

subject of semi-classical treatment. Their quantum corrections by time-dependent rota-

tions in flavor space have been computed, we focused on the one with the lowest classical

mass. Since in two dimensions there are no spin degrees of freedom, in order to search for

higher excitations we must look for vibrational modes which might in principle exist. These

type of excitations in the strong coupling limit can be found as classical time-dependent

solutions of the GSG equations of motion (A.9)–(A.10). Looking at time-dependent solu-

tions of type (4.4) [see eq. A.20] one has that the field ϕ2 satisfies ordinary sine-Gordon

equation

∂ttϕ2 − ∂xxϕ2 + 2m̃2

√
4π

NC
sin

(
4π

NC
ϕ2

)
, ϕ1(x, t) ≡ 0. (4.24)

The time dependent one-soliton solution of (4.24) for the field ϕ2, determines the

configuration {Φ1,Φ2,Φ3} in (4.4) with baryon number NC in the QCD2 context. To look

for higher excitations, for example, one can search for a coupled state of one-baryon and
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breather type vibrations (soliton-antisoliton bound states) of the GSG system, which can

give a total baryon number NC . We were not be able to find a more general time-dependent

mixed single-baryon plus vibrational state with baryon number NC for the general GSG

equation. For example, this type of solution, if it exists, may be useful in order to study

meson-baryon scattering as considered in [7]. As it is well known the SG eq. (4.24) does give

vibrational solutions in the form of breather states (meson states), for later use we simply

recall that in the large NC limit the lowest-lying mesons have masses of order
√

mqec [29]

(mq is defined in eq. (5.5) below). We refer the reader to ref. [5] for more discussion, such

as the various meson couplings to baryons with different degrees of exoticity.

5. The GSG solitons and the exotic baryons

5.1 The first exotic baryon

Here we will follow the analog of the rigid-rotor approach (RRA) to quantize solitons and

obtain exotic states. In this method it is assumed that the higher order representation mul-

tiplets are different rotational (in spin and isospin) states of the same object (the “classical

baryon”, i.e the soliton field) [23]. This assumption has allowed in the past the obtention

of some relations between the characteristics of the nonexotic baryon multiplets which are

satisfied up to a few percent in nature. However, see refs. [30, 31] for some critiques to

this conventional approach for exotic baryons. According to these authors the conventional

RRA, in which the collective rotational approach and vibrational modes of the soliton are

assumed to be decoupled, and only the rotational modes are quantized, is only justified at

large NC for nonexotic collective states in SU(3) models. On the other hand, the bound

state approach (BSA) to quantize solitons, due to Callan-Klebanov [31], considers broken

SU(3) symmetry in which the excitations carrying strangeness are taken as vibrational

modes, and should be quantized as harmonic vibrations. However, for exotic states the

Callan-Klebanov approach does not reproduce the RRA result; indeed this approach gives

no exotic resonant states when applied to the original Skyrme model [31]. There was

intensive discussion of connections between the both approaches mentioned above. The

rotation-vibration approach (RVA) (see [32] and references therein) includes both rota-

tional (zero modes) and vibrational degrees of freedom of solitons and is a generalization

of the both methods above, which therefore appear in some regions of the RVA method

when certain degrees of freedom are frozen. A major result of the RVA method is that

pentaquark states do indeed emerge in both methods above, i.e. in the RRA and BSA. In

order to illustrate the present situation of the theoretical controversy let us mention that

the RVA approach was criticized in [33], and the reply to this criticism was given in [34].

Following the analog of the RRA, the expression (4.21) can be used to compute the

energy of the first exotic baryon E1 (a state containing NC + 1 quarks and one antiquark)

by taking the corresponding Casimir C2(E1) for R = 35 of flavor relevant to the exotic

state in two-dimensions. This state is an analogue of the 10,27 and 35 states in four

dimensions. So, following [5], in the conventional RRA one has that the mass of the first
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exotic state becomes

M(E1) = M(classical)
{

1 +
3

4

[π2

8

1

NC

(
3 + Nf − 6

Nf

)
+

3π2

8

1

N2
C

(
Nf − 3

Nf

)]

−3π2

32

(Nf − 1)2

Nf
+

3

2

}
(5.1)

In the interesting case NC = 3, Nf = 3 this becomes

M(35) = M(classical)
{

1 +
3

4

π2

4
− π2

8
+

3

2

}
. (5.2)

In this case the correction due to quantum fluctuations around the classical solution

is still larger than the classical term, as it was in the earlier computation (3.33). However,

numerically in eq. (5.2) the correction is 2.12, whereas in eq. (3.33) it was 2.46. In fact,

the contribution in (5.2) decreases in 0.34 units the earlier computation. So, we may claim

that the introduction of unequal quark masses and the ansatz given by the GSG model

slightly improve the semi-classical approximation.

Moreover, notice that the ratio of the experimental masses of the Θ+(1530) and the

nucleon is 1.63. On the other hand, the ratio of the first exotic to that of the lightest

baryon in the QCD2 model becomes

M35

M10
=

1 + 3π2

16 − π2

8 + 3
2

1 + π2

16 − π2

8 + 3
2

∼ 1.65, (5.3)

which is only 1% larger to its 4D analog. This must be compared to the earlier calculation

which gave a value 17% larger [see eq. (3.33)]. However, the result in (5.3) could be a

numerical coincidence, since in two dimensions we are not considering the spin degrees

of freedom that is important in QCD4, even though the effects of unequal quark masses

m3 < m1 < m2 have been incorporated as an exact (without using perturbation theory)

contribution to the hamiltonian.

5.2 Exotic baryon higher multiplets

Let us consider exotic states Ep containing p antiquarks and NC + p quarks. In the case

NC = 3, Nf = 3, the only allowed E2 state is a 81 representation of flavor. In the particular

case Nf = 3, for general NC the mass of the Ep state is

M(Ep) = M(classical)

{
1 +

3

4

(
π

2NC

)2[
NC(p + 1) + p(p + 2) − 2

3
N2

C

]
+ 3/2

}
, (5.4)

where the correction is considerably larger than unity. For example for NC = 3 the mass

correction becomes 3.76 units. Even though this correction is one unit less than the one

obtained in [5], we would not consider it as a consistent semi-classical approximation for

NC = 3. However, we may consider the spacing ∆ between Ep+1 and Ep exotic states,

which for large NC becomes

∆ ≡ Ep+1 − Ep =

(
3

4

)
π2

4

Mclassical

NC
∼ 3.8

√
ecmq ; mq ≡ 2m1 + m2

3
(5.5)
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so, the constant ∆ of [5] is decreased by a factor of 3/4. Since Mclassical is O(N1
C), then the

parameter ∆ is a constant O(N0
C) as the exoticity p is increased. Notice that the low-lying

mesons masses are O(N0
C) in the large NC limit [5]. This would mean that the constant ∆

value is like the addition of a meson to the p−state, in the form of quark-antiquark pair,

in order to progress to the next excitation p+1 [35]. Remember that the low-lying mesons

in the SG theory have masses ∼ 3.2
√

mqec [29], which are very close to the spacing ∆

defined in (5.5).

5.3 Radius parameter of the QCD2 exotic baryons

In QCD2, as found above, the quantum correction to the mass depends on one analogue

of the moment of inertia appearing in four dimensions. Following [5] one considers

I = M(classical) < r2 >, (5.6)

the effective soliton radius can be defined by

¿ r À≡
√

< r2 >. (5.7)

Let us compare the quantum mass formula (5.4) with the corresponding relation in

four dimensions [23] in the large NC limit (NC À p À 1), so one has

I =
8N2

C

3π2Mclassical
, (5.8)

and then

¿ r À=

√
I

Mclassical
=

√
8

3

N

πMclassical
=

1

0.96πN
1/4
f

√
ecmq

, (5.9)

where mq was defined in (5.5). For Nf = 3 flavors, ec = 100MeV for the coupling, and

quark masses m3 = 4 MeV, m1 = 54.5 MeV, and m2 = 55.1MeV [these values satisfy the

relationship 13m3 = 5m1 − 4m2 relevant in two-dimensions as is obtained from (A.22)

and (A.51)], we get for the effective baryon radius ≈ 1/(294MeV ) ∼ 0.7 fm. This is 12.5%

less than the radius estimated in [5] for QCD2 exotic baryons. As a curiosity, notice that

the radius parameter of Θ+ has been estimated to be around 1.13 fm = 5.65 GeV−1 (see

e.g. [36] and references therein).

6. Discussion

We have extended the results of refs. [4, 5] concerning several properties of normal and

exotic baryons by including unequal quark mass parameters. In the case of Nf = 3 flavors,

the low-energy hadron states are described by the su(3) generalized sine-Gordon model,

providing a framework for the exact computations of the lowest-order quantum corrections

of various quantities, such as the masses of the normal and exotic baryons. The semi-

classical quantization method we adopted is an analogue of the rigid-rotor approach (RRA)
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applied in four dimensional QCD to quantize normal and exotic baryons (see e.g. [23]).

Even though there is no spin in 2D, we have compared our results to their analogues in

4D; so, obtaining various similarities to the results from the chiral-soliton approaches in

QCD4. The RRA we have followed, as discussed in section 5, may be justified in our case

since there is no mixing between the intrinsic vibrational modes and the collective rotation

in flavor space degrees of freedom [30]. It is remarkable that the GSG ansatz (2.6), with

soliton solutions which take into account the unequal quark mass parameters, allowed us

to improve the lowest order quantum corrections for various physical quantities, such as

the baryon masses; in this way rendering the semi-classical method more reliable in the

large NC limit.

Other properties of the baryons such as a proper treatment of k−baryon bound states

(extending the results of [37] for GSG type ansatz), including baryon-meson scattering

amplitudes, are still to be addressed in the future.

We have found that the remarkable double sine Gordon model arises as a reduced GSG

model bearing a kink(K) type solution describing a multi-baryon; so, the description of

some resonances in QCD2 may take advantage of the properties of the KK̄ system which

are being considered in the current literature [38 – 40].
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A. sl(3,C) GSG model, soliton and kink solutions

Here we summarize some properties of the sl(3,C) GSG model [21, 22] relevant to our

discussions above, such as the soliton and kink spectrum. The discussions make some

connection to the QCD2 developments above, such as (multi-) baryon number of solitons

and kinks. The third soliton solution with baryon number NC is new.

The generalized sine-Gordon model (GSG) related to sl(3,C) is defined by [19, 20, 22]

S =

∫
d2x

3∑

i=1

[
1

2
(∂µΦi)

2 + µi

(
cosβ0Φi − 1

)]
. (A.1)

Since in this case one has two simple roots there are two independent real fields, ϕ1, 2,

such that

Φ1 = ν1(2ϕ1 − ϕ2); Φ2 = ν2(2ϕ2 − ϕ1); Φ3 = ν3(r ϕ1 + s ϕ2), (A.2)

νi (i = 1, 2, 3), s, r ∈ IR

which must satisfy the constraint

Φ3 = δ1Φ1 + δ2Φ2, (A.3)
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where δ1, δ2 are some real numbers. The Φ fields dependence on the ϕ′s can be explained in

the context of the Lie algebraic construction of the classical version of the model [20, 13].

Taking into account (A.2)–(A.3) and the fact that the fields ϕ1 and ϕ2 are independent

we may get the relationships

ν2δ2 = ρ0ν1δ1 ν3 =
1

r + s
(ν1δ1 + ν2δ2); ρ0 ≡ 2s + r

2r + s
(A.4)

The sl(3,C) model has a potential density

V [ϕi] =

3∑

i=1

µi

(
1 − cosβiΦi

)
(A.5)

In the sl(3,C) construction of [22] the parameters δi depend on the couplings βi [βi ≡
β0νi] and they satisfy certain relationship. This is obtained by assuming µi > 0 and the

zero of the potential given for Φi = 2π
β0

ni, which substituted into (A.3) provides

n1δ1 + n2δ2 = n3, ni ∈ ZZ (A.6)

The last relation combined with (A.4) gives

(2r + s)
n1

ν1
+ (2s + r)

n2

ν2
= 3

n3

ν3
. (A.7)

The periodicity of the potential implies an infinitely degenerate ground state and then

the theory supports topologically charged excitations. So, consider the vacuum lattice

defined by

(Φ1 , Φ2) =
2π

β0
(n1 , n2), na ∈ ZZ. (A.8)

It is convenient to write the equations of motion in terms of the independent fields ϕ1

and ϕ2

∂2ϕ1 = −µ1β1∆11sin[β1(2ϕ1 − ϕ2)] − µ2β2∆12sin[β2(2ϕ2 − ϕ1)] +

µ3β3∆13sin[β3(rϕ1 + sϕ2)] (A.9)

∂2ϕ2 = −µ1β1∆21sin[β1(2ϕ1 − ϕ2)] − µ2β2∆22sin[β2(2ϕ2 − ϕ1)] +

µ3β3∆23sin[β3(rϕ1 + sϕ2)], (A.10)

where the ∆′
ijs depend on β0, νj (j = 1, 2, 3), r, s, δa (a = 1, 2).

Notice that the eqs. of motion (A.9)–(A.10) exhibit the symmetries

ϕ1 ↔ ϕ2, µ1 ↔ µ2, ν1 ↔ ν2, δ1 ↔ δ2, r ↔ s; (A.11)

and ϕa ↔ −ϕa, a = 1, 2 (A.12)

In the following we write the 1-soliton(antisoliton), 1-kink(antikink) and bounce type

solutions and compute the relevant (multi-)baryon numbers associated to the U(1) sym-

metry in the context of QCD2.
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A.1 One soliton/antisoliton pair associated to ϕ1

The functions

ϕ1 =
4

β0
arctan{d exp[γ1(x − vt)]}, ϕ2 = 0, (A.13)

satisfy the system of equations (A.9)–(A.10) for the set of parameters

ν1 = 1/2, δ1 = 2, δ2 = 1, ν2 = 1, ν3 = 1, r = 1. (A.14)

provided that

13µ3 = 5µ2 − 4µ1, γ2
1 =

β2
0

13
(6µ2 + 3µ1). (A.15)

This solution is precisely the sine-Gordon 1-soliton associated to the field ϕ1 with mass

M sol
1 =

8γ1

β2
0

. (A.16)

From (A.2) and taking into account the parameters (A.14) one has the relationships

between the GSG fields

Φ1 = −Φ2 = Φ3 = ϕ1 (A.17)

Moreover, from (A.6)–(A.7) and (A.14) one gets the relationships

n1 = −n2 = n3 (A.18)

Taking into account the QCD2 motivated formula (2.17) and (A.18) one can compute

the baryon number of the GSG soliton (A.13) taking n1 = 1

Q(1)
B = NC , (A.19)

where the superindex (1) refers to the associated ϕ1 field nontrivial solution.

A.2 One soliton/antisoliton pair associated to ϕ2

The functions

ϕ2 =
4

β0
arctan{d exp[γ2(x − vt)]}, ϕ1 = 0 (A.20)

solve the system (A.9)–(A.10) for the choice of parameters

ν1 = 1, δ1 = 1, δ2 = 2, ν2 = 1/2, ν3 = 1, s = 1 (A.21)

provided that

13µ3 = 5µ1 − 4µ2, γ2
2 =

β2
0

13
(6µ1 + 3µ2). (A.22)
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This is the sine-Gordon 1-soliton associated to the field ϕ2 with mass

M sol
2 =

8γ2

β2
0

. (A.23)

As above from (A.2) and the set of parameters (A.21) one has the relationships

−Φ1 = Φ2 = Φ3 = ϕ2. (A.24)

From (A.6)–(A.7) and (A.21) one gets the relationship

n1 = −n2 = −n3. (A.25)

So, taking into account the QCD2 motivated formula (2.17) and (A.25) one computes

the baryon number of this GSG soliton taking n2 = 1

Q(2)
B = NC , (A.26)

where the superindex (2) refers to the associated ϕ2 field.

A.3 1-soliton/1-antisoliton pairs associated to ϕ̂ ≡ ϕ1 = ϕ2

In the case ϕ1 = ϕ2 one has the 1-soliton solution ϕ̂ of the system (A.9)–(A.10) associated

to the parameters

ν1 = 1, δ1 = −1/2, ν2 = 1, δ2 = −1/2, ν3 = −1/2, r = s = 1. (A.27)

One has the 1-soliton

ϕ1 = ϕ2 ≡ ϕ̂,

ϕ̂ =
4

β0
arctan{d exp[γ3(x − vt)]}, (A.28)

which requires

γ2
3 = β2

0

(
µ1 +

1

2
µ3

)
, µ1 = µ2. (A.29)

This is a sine-Gordon 1-soliton associated to both fields ϕ1, 2 in the particular case

when they are equal to each other. It possesses a mass

M sol
3 =

8γ3

β2
0

. (A.30)

In view of the symmetry (A.11) which are satisfied by the parameters (A.27) and (A.29)

one can think of this solution as doubly degenerated.

As above, from (A.2) and the set of parameters (A.27) one has the following relation-

ships

Φ1 = Φ2 = −Φ3 = ϕ̂. (A.31)
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From (A.6)–(A.7) and (A.27) one gets the relationship

−2n3 = n1 + n2. (A.32)

So, taking into account the QCD2 motivated formula (2.17) and (A.32) one computes the

baryon number of this GSG solution taking n3 = −1

Q(ϕ̂)
B = NC , (A.33)

where the superindex refers to the associated ϕ̂ field.

A.3.1 Antisolitons and general N-solitons

The GSG system (A.9)–(A.10) reduces to the usual SG equation for each choice of the

parameters (A.14), (A.21) and (A.27), respectively. Then, the N−soliton solutions in each

case can be constructed as in the ordinary sine-Gordon model.

Using the symmetry (A.12) one can be able to construct the 1-antisolitons corre-

sponding to the soliton solutions (A.13), (A.20) and (A.28) simply by changing their signs

ϕa → −ϕa.

A.4 Mass splitting of solitons

It is interesting to write some relationships among the various soliton masses.

i) For µ1 6= µ2 one has respectively the two 1-solitons, (A.13) and (A.20), with

masses (A.16) and (A.23) related by

(M sol
1 )2 − (M sol

2 )2 =
48NC

π
(µ2 − µ1). (A.34)

ii) For µ1 = µ2, there appears the third soliton solution (A.28)–(A.29). Then, taking

into account (A.15), (A.22), (A.29), (A.34) and the third soliton mass (A.30) we have the

relationships

M sol
1 = M sol

2 , M sol
3 =

√
3/2 M sol

1 , (A.35)

γ1 = γ2 =
√

2/3 γ3, µ3 =
1

13
µ1. (A.36)

Notice that in this case M sol
3 < M sol

1 +M sol
2 , and the third soliton is stable in the sense

that energy is required to dissociate it.

A.5 Kink of the double sine-Gordon model as a multi-baryon

In the system (A.9)–(A.10) we perform the following reduction φ ≡ ϕ1 = ϕ2 such that

Φ1 = Φ2, Φ3 = q Φ1, (A.37)

with q being a real number.

Moreover, for consistency of the system of equations (A.9)–(A.10) we have

µ1 = µ2, δ1 = δ2 = q/2, ν1 = ν2, ν3 =
q

2
ν1, r = s = 1. (A.38)
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Thus the system of eqs. (A.9)–(A.10) reduces to

∂2ΦDSG = −µ1

ν1
sin(ν1ΦDSG) − µ3δ1

ν1
sin(q ν1ΦDSG), ΦDSG ≡ β0φ. (A.39)

This is the so-called two-frequency sine-Gordon model (DSG) and it has been the

subject of much interest in the last decades, from the mathematical and physical points of

view.

If the parameter q satisfies

q =
n

m
∈ Q (A.40)

with m, n being two relative prime positive integers, then the potential µ1

ν2
1

(1 −
cos(ν1ΦDSG)) + µ3

2ν2
1

(1 − cos(qν1ΦDSG)) associated to the model (A.39) is periodic with

period

2π

ν1
m =

2π

q ν1
n. (A.41)

Then, as mentioned above the theory (A.39) possesses topological excitations.

From (A.2) and the set of parameters (A.38) one has the relationships

Φ1 = Φ2 =
1

q
Φ3 = ν1φ. (A.42)

And from (A.6)–(A.7) and (A.38) one gets the relationship

n3 =
q

2
(n1 + n2). (A.43)

So, taking into account the QCD2 motivated formula (2.17) and (A.43) one computes

the baryon number of this DSG solution

Q(DSG)
B = NC

(
1 +

2

q

)
n3, n3 ∈ ZZ, (A.44)

where the superindex (DSG) refers to the associated DSG solution.

In the following we will provide some kink solutions for a particular set of parameters.

Consider

ν1 = 1/2, δ1 = δ2 = 1, ν2 = 1/2, ν3 = 1/2 and q = 2, n = 2, m = 1 (A.45)

which satisfy (A.38) and (A.40). This set of parameters provide the so-called double sine-

Gordon model (DSG), such that from (A.42) and (A.45) the field configurations satisfy

Φ1 = Φ2 =
1

2
Φ3 =

1

2
φ. (A.46)

Its potential −[4µ1(cos
ΦDSG

2 − 1) + 2µ3(cosΦDSG − 1)] has period 4π and has extrema

at ΦDSG = 2πp1, and ΦDSG = 4πp2 ± 2cos−1[1 − |µ1/(2µ3)|] with p1, p2 ∈ ZZ; the second

extrema exists only if |µ1/(2µ3)| < 1. Depending on the values of the parameters β0, µ1, µ3
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the quantum field theory version of the DSG model presents a variety of physical effects,

such as the decay of the false vacuum, a phase transition, confinement of the kinks and

the resonance phenomenon due to unstable bound states of excited kink-antikink states

(see [38] and references therein). The semi-classical spectrum of neutral particles in the

DSG theory is investigated in [39].

A particular solution of (A.39) for the parameters (A.45) can be written as

ΦDSG := 4 arctan

[
1

d

1 + h exp[2γ(x − vt)]

exp[γ(x − vt)]

]
(A.47)

provided that

γ2 = β2
0

(
µ1 + 2µ3

)
, h = −µ1

4
, (A.48)

A.5.1 A multi-baryon and the DSG kink (h < 0, µi > 0)

For the choice of parameters h < 0, µi > 0 in (A.48) the equation (A.47) provides

φ =
4

β0
arctan

[
−2|h|1/2

d
sinh[γK (x − vt) + a0]

]
, γK ≡ ±β0

√
µ1 + 2µ3, (A.49)

a0 =
1

2
ln|h|.

This is the DSG 1-kink solution with mass

MK =
16

β2
0

γK

[
1 +

µ1√
2µ3(µ1 + 2µ3)

ln

(√
µ1 + 2µ3 +

√
2µ3√

µ1

)]
. (A.50)

Since one must have µ3

µ1
> 1

2 (see below for the range of possible values of these

parameters) the potential supports one type of minima and thus there exists only one type

of topological kink [40]. So, the DSG model possesses only the topological excitation (A.49)

relevant to our QCD2 discussion.

One can relate the parameters µj in (A.1) to the mass parameters mi in the effective

lagrangian of QCD2 in (2.10). So, for the “physical values” Nf = 3 and ec = 100MeV for

the coupling and taking into account (2.3), (2.5) and (2.7) one has for large NC

µj = 2
mj

m0
m2 ≈ NC mj 124(MeV), (A.51)

thus, the µ′
js have dimension (MeV)2.

For the values of the mass parameters µ1, µ3 in the range [103 , 5× 104](MeV)2 (take

m1 ≈ m2 ≈ 52 MeV; m3 = 4 MeV, notice that these values satisfy the relationship (A.22))

one can determine the values of the ratio κ between the kink (A.50) and the third soli-

ton (A.30) masses

κ ≡ MK

M sol
3

, 4 < κ < 4.2 (A.52)
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The baryon number of this DSG kink solution is obtained from (A.44) taking q =

2, n3 = 2

Q(K)
B = 4NC , (A.53)

where the superindex (K) refers to the associated DSG kink solution.

The above relations (A.52)–(A.53) suggest that the decay of the kink to four solitons

{M sol
j } (j = 1, 2, 3) is allowed by conservation of energy and charge, however one can see

from the kink dynamics that it is a stable object and its fission may require an external

trigger. For similar phenomena in soliton dynamics see ref. [41].

Let us emphasize that the baryons with charges 2n3NC [ set q = 2 in (A.44)] for

n3 = 1, 2, . . . are assumed to be bound states of 2, 4, . . . “basic” baryons, and so, they

would correspond to di-baryon states like deuteron ( 1
1H

+) and the “α particle” ( 4
2He+).

However, we have not found, for the QCD2 motivated parameter space (µ1, µ3) any kink

with baryon number 2NC . These 2−baryons are expected to be found in the 2−soliton

sectors of the GSG model. Notice that in our formalism the four-baryon appears already

for Nf = 3 as a DSG kink with topological charge (A.53). In the formalism of refs. [4, 37]

the multibaryons have baryon number kNC (k ≤ Nf − 1), so the (Nf − 1)−baryon is the

one with the greatest baryon number.

A.6 Configuration with baryon number 3NC

These solutions do not form stable configurations, nevertheless we describe them for com-

pleteness. Let us take ϕ1 = ϕ2, so one has two 1-soliton solutions ϕ̂A (A = 1, 2) of the

system (A.9)–(A.10) associated to the parameters

ν1 = 1, δ1 = 1/2, ν2 = 1, δ2 = 1/2, ν3 = 1/2, r = s = 1. (A.54)

As the first 1-soliton one has

ϕ1 = ϕ2 ≡ ϕ̂1, (A.55)

ϕ̂1 =
4

β0
arctan{d exp[γ4(x − vt)]}, (A.56)

which requires

d2 = 1, 38γ2
4 = β2

0

(
25µ1 + 13µ2 + 19µ3

)
(A.57)

This is a sine-Gordon 1-soliton associated to both fields ϕ1, 2 in the particular case

when they are equal to each other. It possesses a mass

M sol
4 =

8γ4

β2
0

. (A.58)

In view of the symmetry (A.11) we are able to write from (A.57)

d2 = 1, 38γ2
5 = 25µ2 + 13µ1 + 19µ3, (A.59)
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and then one has another 1-soliton from (A.55)–(A.56)

ϕ1 = ϕ2 ≡ ϕ̂2, (A.60)

ϕ̂2 =
4

β0
arctan{d exp[γ5(x − vt)]}. (A.61)

It possesses a mass

M sol
5 =

8γ5

β2
0

. (A.62)

Similarly, from (A.2) and the set of parameters (A.54) one has the following relation-

ships

Φ1 = Φ2 = Φ3 = ϕ̂A, A = 1, 2. (A.63)

From (A.6)–(A.7) and (A.54) one gets the relationship

2n3 = n1 + n2. (A.64)

So, taking into account the QCD2 motivated formula (2.17) and (A.32) one computes

the baryon number of this GSG solution taking n3 = 1

Q(A)
B = 3NC , (A.65)

where the superindex (A) refers to the associated ϕ̂A field. Therefore, the both solutions

A = 1, 2, have the same baryon number in the context of QCD2. The individual soliton

solutions (A.56) and (A.61) have, each one, a topological charge NC , since they are sine-

Gordon solitons. Then, the configuration (A.63) with total charge 3NC is composed of

three SG solitons. Therefore, by conservation of energy and topological charge arguments

one has that the rest mass of the static configurations A = 1, 2, with baryon number 3NC

will be, respectively

M config.
4, 5 ≡ 3M sol

4, 5, (A.66)

where the masses M sol
4, 5 are given by (A.58), (A.62).

Moreover, one can verify the following relationships

i) M config.
4, 5 > M sol

1 + M sol
2 ; µ1 6= µ2, (A.67)

ii) M config.
4 = M config.

5 > M sol
1 + M sol

2 + M sol
3 ; µ1 = µ2, (A.68)

where the soliton masses M sol
j (j = 1, 2, 3) are given by (A.16), (A.23), (A.30), respectively.

One observes that the configurations A = 1, 2, do not form bound states (bound states

would be formed if the inequalities (A.67)–(A.68) are reversed), and they may decay into the

“basic” set {M sol
1 , M sol

2 } or {M sol
1 , M sol

2 , M sol
3 } of solitons, such that the excess energy

is transferred to the kinetic energy of the solitons.
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